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Salinosporamide Al) was recently discovered by Fenical and less). We report herein the first enantiospecific total synthesis
his group as a bioactive product of a marine microorganism that is of 1.
widely distributed in ocean sedimenrtsStructurally it closely
resembles the terrestrial microbial product omurgidga) that
we synthesized several years ago and demonstrated to be a potent
inhibitor of proteasome functioh.Omuralide is generated by
p-lactonization of theN-acetylcysteine thiolester lactacystibj
that was first isolated by the Omura group as a result of microbial
screening for nerve growth factor-like activitySalinosporamide
A is an even more effective proteasome inhibitor than omuralide,

and, in addition, it displays surprisingly high in vitro cytotoxic The pathway of the synthesis of salinosporamide A is outlined
activity against many tumor cell lines (4€values of 10 nM or in Scheme 1. §-Threonine methyl ester walN-acylated with
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4-methoxybenzoyl chloride in Gi€l, at 23°C to form the amide

3 (71%) which was then cyclized to oxazolidg80%) by heating

at reflux in toluene withp-toluenesulfonic acid. Deprotonation of
4 with lithium diisopropylamide in THF and alkylation of the
resulting enolate with chloromethyl benzyl ether afforded the
required tertiary stereocenter & selectively in 69% yield.
Reduction of5 with NaBH;CN—HOAc gave theN-4-methoxy-
benzylamines (90%) which was then transformed in 96% vyield to
theN-acrylyl-N-PMB derivative (PMB= 4-methoxybenzyl) by the
one-flask sequence: (1) reaction with }8&Cl and EtN to form
the TMS ether, (2) acylation with acrylyl chloride af@, and (3)
acidic work up with aqueous HCI. DesMartin periodinane
oxidation of 7 produced the keto amide est8rin 96% yield.
Cyclization of8 to the y-lactam9 was accomplished by means of
an internal Baylis-Hillman-aldol reactiof using quinuclidine as
the catalytic base in dimethoxyethane at°Q for 7 d. The
cyclization product, obtained in 90% yield, consisted®aind the
C(p) diastereomerl(0) in a ratio of 9:1. TheN-benzyl analogue of
10 was obtained in crystalline form, mg 1367 °C, and was
demonstrated to possess the stereochemistry show0 fyr single-
crystal X-ray diffraction analysis. When the internal aldol reaction
of 8 was conducted at 20C for 9 h,9 and 10 were obtained in
90% vyield and a ratio of 4:1. Silylation dd with bromometh-
yldimethylsilyl chloride affordedll1 in 95% yield. Silyl etherll
and the diastereomeric silyl ether were easily and conveniently

under a wide variety of conditions gave considerably lower yields
than the process shown in Scheme 1 mainly because of competing
O-acylation and subsequent further transformations. So far, qui-
nuclidine has proved superior to other catalytic bases, for example,
1,4-diaza[2.2.2] bicyclooctane, for the cyclization ®&fto 9. As
indicated just above, the attachment of the 2-cyclohexenyl group
to aldehydel3 to form 14 worked best with the reagent 2-cyclo-
hexenylzinc chloridé.Attempts to form14 from 13 using Lewis
acid-catalyzed reaction with tri-butyl-2-cyclohexenyltin were
totally unsuccessful. The saponification of methyl estér at
temperatures abové¢5 °C led to lowered vyields of the required
carboxylic acid. Finally, the one-flagklactonization and chlorina-
tion reactions leading td were remarkably clean and probably
proceed in>90% yield per step.

In summary, this paper describes an efficient and short total
synthesis of salinosporamide A that is capable of providing
substantial quantities of this currently rare substance for further
biological study, especially to determine its potential as an anti-
cancer agent.
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Supporting Information Available: Experimental procedures for
the synthetic sequences described herein, together with characterization

separated at this stage by silica gel column chromatography on agata for reaction products. X-ray diffraction data (CIF) are provided

preparative scale.

The required stereochemical relationship about)&nd Cf3)
of the y-lactam core was established by trbutyltin hydride-
mediated radical-chain cyclization which transforniedcleanly
into thecis-fusedy-lactam12.5 Cleavage of the benzyl ether 2
(Hz, Pd—C) and DessMartin periodinane oxidation provided the
aldehydel3in ca. 90% yield froml2. The next step, the attachment
of the 2-cyclohexenyl group to the formyl carbon and the establish-
ment of the remaining two stereocenters, was accomplished in a
remarkably simple way. 2-Cyclohexenyl-tributyltin (from Pd-
(0)-catalyzed 1,4-addition of tributyltin hydride to 1,3-cyclohexa-
diene¥ was sequentially transmetalated by treatment with 1 equiv
of n-butyllithium and 1 equiv of zinc chloride to form 2-cyclohex-
enylzinc chloride in THF solution. Reaction of this reagent with
the aldehydel3 furnished the desired formyl adduct stereoselec-
tively (20:1) in 88% yield” Tamaoe-Fleming oxidatiofi of 14 gave
the triol 15 in 92% yield. Ce(IV)-induced oxidative cleavage of
the PMB group ofl15 afforded the triol esterl6 which was
hydrolyzed to the correspondinglactam-carboxylic acid using 3
N lithium hydroxide in aqueous THF at 4C. This acid was
converted to salinosporamide Al)( (65% overall yield) by
successive reaction with 1.1 equiv of bis-(2-oxo-3-oxazolidinyl)
phosphinic chloride (BOPCI) and pyridine at 23 for 1 h (to form
the -lactone) and then 2 equiv of triphenylphosphine dichloride
in CH;CN—pyridine at 23°C for 1 h. The identity of synthetid
and natural salinosporamide A was established by comparison
measurements ofH and 13C NMR spectra, mp and mixed mp
(168-170 °C), optical rotation, IR and mass spectra, and chro-
matographic mobilities in three different solvent systems.

There are a number of steps in the synthesid dfat require
comment. The direct conversion 6fto 7 with acrylyl chloride

for theN-benzyl analogue df0. This material is available free of charge
via the Internet at http:/pubs.acs.org.
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